This page will contain various emails and references discussing the
Shnoll work. Thus far we have:
-
Tatanya Zenchenko's description of the beginning of the work
-
John Walker's examination of random (radioactive) data using algorithmic methods
-
Dick Bierman, letter describing Axford confirmation
-
Edwin Pozharski, Re: human judging -> algorithm
-
Dean Radin, correlational analysis (not yet available)
-
Email from Shnoll following Euro-SSE meeting, including abstracts
Tatanya Zenchenko's description of the beginning of the work
In response to my question about the genesis of Simon Shnoll's quite
remarkable procedure, one of his colleagues, Tatanya Zenchenko kindly
described the history of his work. This is a slightly edited version of
the story.
Date: Tue, 11 Jul 2000 20:40:39 +0400
From: Tatyana Zenchenko
To: rdnelson
Subject: Re: Shnoll method, was Randomness in Amsterdam
> I would like to repeat this question. Even though it may be
> difficult to explain, I and others would appreciate some
> discussion, which should lead to more efficient effort to
> develop robust automated analysis, and ultimately to more
> valuable insight on the possible cosmophysical influences.
>
> Best wishes,
> Roger
Roger,
Sorry for delay, I'll try to answer your question (as far as I know the
history) but it is actually very long story.
About 45 years ago Simon Shnoll was a biochemist dealing with muscle
proteins. He was a very good experimentalist, but during experiment he
obtained two distinct values of subsequent measurements of chemical
reaction rate. For example, 100 and 120, but almost never - 110. It
contradicted theory... He repeated his probes up to 300 times every
day, under absolutely equivalent conditions, but situation remained the
same. Now we can say that he got one histogram (300 points) per day and
these histograms didn't look like smooth normal distributions, but very
often they were similar to each other: they had two distinct peaks and deep
gaps between them. Moreover, sometimes this "two-peak" distribution kept the
same form for two or three days, and after that it became "two-and-half peaks"
and so on. (Of course the matching of these histograms requared shifting and
rescaling, but the main idea, "the idea of form" remained the same).
When all possible artifacts were excluded, he supposed that the point is
in a special properties of muscle proteins. Then he asked his teacher,
great russian biochemist Vladimir Engelhardt, "why are these repeated probes
so different?" and Engelhardt answered: "Don't do so many repetitions
and this effect will disappear"...
Simon Shnoll wrote in his laboratory journal "[I plan] to find out the
origin of strange result distributions and return to main question".
After that 45 years passed. He did not return yet [to the biochemistry].
During these years he has examined many systems. If the explanation is special
properties of myosin, let us take another protein where the distributions
should not be strange, should not have sharp peaks and "inertia" in their
form. But other proteins had similar behaviour. If we take a chemical, not
a biochemical system? The same. It was very labour-intensive work and he could
do only one histogram per day. But these histogram sequences had some logic in
their development. But there were plenty of possible explanations of this
effect, both scientific and artifactual. All of them needed to be examined,
so it took many years. During this long time Dr. Shnoll suspected that
oscillations in homogeneous aqueous system can exist. He was right: under
his head in his laboratory the Belousov-Zhabotinskii reaction was
discovered. But in any case these oscillations could not explain the
effect he was interested in, because around that time he observed the same
effect in distributions of radioactivity measurements (radioactivity was
his second speciality).
Since that discovery (in 1986) Prof. Shnoll and his team use radioactivity
measurements as a main object of experiments because of absence of
trivial factors affecting this process. So, for scientist who usually
asks unusual questions it was not so hard to apply this approach
(histogram sequences) to abnormalities of biochemical reaction, [and
then to other systems]. After that there was just the search for an answer.
The last part of this story you read in our first UFN paper, where an
exact description of the phenomenon is given. All the words above are only
the "poetry", but I hope it gives the answer for your question.
I should note that it was a real (and rare) pleasure to read the
interpretation of reader who understood the sense of our articles so
correctly.
I am sorry for my English, I hope this story is written clearly to
understand. But if you want to publish this message in Internet (I guess
it is so) I would be grateful for some help in English style.
Tatyana
P.S. Thank for your care, all your emails were received. There was mistake
in Prof. Shnoll's address, but he got your message from me.
John Walker's algorithmic methods
Date: Wed, 12 Jul 2000 02:25:25 +0200
From: John Walker
To: rdnelson
Cc: Dick J Bierman , nick herbert ,
Jack Sarfatti ,
Dean Radin , creon@isso.org
Subject: Statistical pitfalls in interpreting Shnoll et al replications
Please excuse the unusual format of this message. Rather
than including figures as attachments, I've provided URLs
which download them so as to avoid burdening you with
images you may not be interested in viewing.
For the last two weeks, I've been operating a radioactive
decay based random event generator and tabulating the
data to test for the effect reported in Shnoll et al [1].
Having accumulated several days' data, I reduced them by
computing histograms for 10 minute experiments, each
consisting of 100 measurements synchronised to the start
of a minute. From these I generated smoothed histograms using
an exponentially smoothed moving average with a smoothing
constant of 0.2.
These histograms were read by an analysis program which
aligned them by their mean values and then computed
a chi-square goodness of fit between the aligned curves.
I did not normalise maximum values, adjust variance, or
test matching of mirrored curves--all of these are easy
to implement.
All pairs of histograms were evaluated for closeness of fit
and the results sorted from the closest match to most distant. One
can then plot the time interval for histograms with the closest
match (in this case, the closest 100,000 of a total of 1,738,442
pairs of histograms).
(NOTE: Use your browser's back button to
return here after viewing these figures.)
Closest 100,000 pairs
Yaaar!!! Look at that spike at zero! How similar it is to
figures 3 and 4 of [2]. Indeed....
As a control, let's make the same plot for the the worst 100,000
matches of our experiment pairs:
Worst 100,000 pairs
Hmmm...pretty similar. If the effect were real, we'd expect the peak
to be attenuated as we broaden the similarity criterion. Okay...let's
make a plot of the *entire* data set--certainly this should suppress
any "Cosmophysical" influence, as we're comparing every pair of
experiments regardless of their closeness, however defined:
All pairs
Well, hello! Look at those textbook peaks at 0, 24, and 48 hours.
What do they mean? Well, it's all really rather simple. Note that
the 0 hour peak in all of the graphs, as well as figures 3 and 4 of [2]
is almost always about twice the value of the neighbouring bars.
This is a simple consequence of binning. If one computes the number
of hours difference between two experiments conducted at Unix time_t
second values t1 and t2 as:
hbin = (t1 - t2) / (60 * 60);
then the zero bin will encompass all values between -3599 and +3599,
while the rest of the bins will span only one hour instead of two.
Consequently, the zero bin will have on the average twice as
many samples, as shown in these examples and figured 3 and 4 in [2].
Periodicities at the 24 and 48 hour intervals are clearly
apparent in the above-mentioned chart. These are readily
explained by daily cycles of system administration. Histogram
time distance statistics are sensitively dependent on regular
cycles which interrupt the collection of data. In this case,
I tended to shut down the data collection to run
other programs around 18:00 UTC every day, and the histogram
analysis fingered it.
Finally, as a control (and to illustrate the effect of double-counting
zero hour histograms), I prepared pseudorandom data for 10 days of
experiments and processed it in the same manner yielding the plot:
Pseudorandom data
This make it clear how the delta-T = 0 spike is purely an artefact
of double-counting assignments to the zero bin.
With this in mind, take a look at:
Shnoll assessment of GCP data
Note how closely it resembles these plots--in particular how
the central peak is close to twice that of the adjacent values.
The crucial thing in reducing data from experiments of this
type is to insist on absolute sign symmetry--binning ±0 into
one slot will result in spikes around the zero point which
are not present in the raw data.
Having developed a modular toolkit for analysing experiments of
this type, I'll try various other measures of closeness
over the next few days. All of this, including source code,
will eventually be posted once I beat it into something others
can understand. If anybody on this list wants a copy of the
code as it stands, let me know and I'll make a copy available
to you. But beware...this is "ad hack" SGI/IRIX and Sun/Solaris code
written without the slightest thought of portability. It'll
probably work on most POSIX-like platforms, but if it doesn't,
you're on your own; I typically budget three to six months
for portability testing of Unix code I publish--we're working
in real-time here, so I'll lighten up if you're willing to
debug on your own.
References:
1. http://ufn.ioc.ac.ru/ufn98/ufn98_10/ufn9810d.pdf
2. http://www.ufn.ru/ufn2000/ufn00_2/ufn002h.pdf
Bierman letter describing Axford confirmation
Date: Wed, 12 Jul 2000 12:43:59 +0200
From: Dick J Bierman
To: John Walker , rdnelson
Cc: nick herbert , Jack Sarfatti ,
Dean Radin , creon@isso.org
Subject: Shnoll et al replications
Hi to all,
We just recieved a confirmation by W.I. Axford of the Max-Plank
Aeronomy Institute, Lindau, Germany, that he has done an independent
replication of the Schnoll effect.
If I understand him correctly he just produced sets of histograms
from two (random?) sources, removed all time information, randomized
the order and then send them to Tatiana for human judgement.
She then returned to them the pairs that were simlar and these turned
out to be from simultaneous measurements.
No stats were given but from his words it seems the result is robust.
(He is a bit worried about the stretching operation but that can't
explain the results; it is worrying from a physics perspective though).
So this is a good reason (at least for me) to become more optimistic
and to invest a bit more time in getting the human judgement replaced
by computerized judgement.
The results produced by John suggest to me that the chi-2 isn't the
measure that corresponds very well to their human scored similarity.
I have been thinking about a bit different approach.
The idea is that two patterns are more alike if the program that you
have to write in order to transform one into the other is shorter.
One possible instantiation of this idea might be to fit both
histograms with a polynomial and then derive the transformation formula.
Not simple but doable. There might be other and probably better ways to
fit the histograms. Wavelet analysis comes to mind.
Anybody ideas?
Dick
Pozharski: Notes on algorithmic efforts
Date: Fri, 4 Aug 2000 09:11:11 +0200
From: Dick J Bierman
To: Edwin Pozharski
Subject: Re: human judging -> algorithm
Thanks Edwin,
I was considering neural nets too, so this mail saves me lots of time!
Anyway, at this point I think we should go for presenting the
algorithmic failures to the human judge and ask to do them again while
thinking aloud. Also I would like to see test-retest reliability for
the human procedure. As you noted in an earlier mail it not too
difficult to get algorithmic similarity where we see it easily. We
should therefore focus on the cases where the similarity is not obvious.
My present feeling is that the human guess procedure introduces some
paranormal effects. These can easily be sorted out because of their
notorious lack of test-retest reliability.
The problem of the latter approach is that we need the original human
judge and much time. So we need to find somebody who is willing to
spend his time on this. Or to find considerable amounts of money to
hire such a person.
Dick
PS It might be a good idea to summarize somewhere what everybody tried so
that we don't repeat the same 'mistakes'. I did a.o. Fourier and Wavelet
analysis on untransformed histograms. Wavelet could be tried again after
transformation (stretching/shifting). Fourier analysis is rather
unsensitive to these transformations.
>Dick,
>
>once again sorry about the delay with response. Below is the same
>description I sent to Dean Radin: I could write another one, but it
>would basically be the same.
>
>
>> Dean,
>>
>> I will describe briefly what I tried to do and then you will ask
>> about particular details in case you will find it necessary.
>>
>> 1. Different measures of the correlation between histogram vectors
>> itself.
>>
>> This is, probably, the very first thing which comes to everybody's
>> mind. Of course, it doesn't work if you simply calculate correlation
>> coefficient between the unperturbed histograms, since they are
>> shifted, stretched and probably mirrored. The crucial improvement
>> came when I optimized the scalar product (which is the same as the
>> correlation coefficient) by shift and stretch.
>>
>> 2. Neural nets.
>>
>> I tried backpropagation and Kohonen networks. Backpropagation failed
>> completely being applied simply to the original histograms. It
>> definitely needs some conversion of the histogram to the the set of
>> parameters describing its shape, but I didn't find right one yet. Of
>> course, this learning uses sets of pairs of similar histograms,
>> pre-judged by human. The key point of Kohonen learning is how to find
>> the winning pattern - I used the same optimized scalar product for it.
>> Actually, it works as good as optimized scalar product itself -
>> recognizes similar histograms pretty well but produces a little bit
>> too much wrong pairing. But it gives one unteresting things - the
>> set of patterns it finds in the whole dataset.
>>
>> 3. Converting histogram into a peak sequence.
>>
>> This approach is based on what we think is how human makes the
>> judgement. What seems to be the most important is relative positions
>> and heights of peaks which forms the general shape, or pattern, of the
>> histogram. Dr Konradov is the one who spent more time trying this as
>> I did, so in this particular case it makes sense to ask him.
>>
>> There was one guy in the past, who tried to fit histograms by
>> polynomials ans then made cluster analysis on polynomial
>> coefficients.
>>
>Ed.
>
>--
>Edwin Pozharski, PhD
>Postdoctoral Fellow, Department of Biochemistry,
>Northwestern University, Evanston, IL, 60208
>Email: e-pozharskiy@northwestern.edu
Radin analysis (not yet available)
Recent briefs by Shnoll and Kirillov
From shnoll@pbc.iteb.serpukhov.su Sat Nov 11 11:07:43 2000
Date: Sat, 28 Oct 2000 19:44:58 +0300
From: Simon Shnoll
To: rdnelson
Cc: Dick J Bierman , Jack Sarfatti ,
nick herbert , neil slade ,
Amit Goswami , C Levit ,
Faustin Bray ,
Lyle Fuller , Mark Comings ,
Marcello Truzzi ,
Paul Zielinski ,
Russell Targ , Saul-Paul Sirag ,
Shipi Shtrang , Tony Smith ,
Vladimir Poponin ,
zenchenko , fawolf@ix.netcom.com,
JHouston@aol.com, John Walker ,
Hal Puthoff , John Alexander
Subject: Re: Shnoll method, was Randomness in Amsterdam
Dear Dr. Sarfatti, Dr. Nelson, and all colleagues, participating in
summer 2000 Internet disscussion on Shnoll effect.
1. Continuation of the discussion initiated by Dr. Sarfatti on effects
which we have found was delayed up to the end of SSE Meeting in
Amsterdam 20-23 October. Now the Meeting is over. An important result of
contacts in Amsterdam is the understanding that classic statistic
"criteria of agreement of hypotheses" are inappropriate indeed for
evaluation of similarity of thin structure of histograms because this is
determined by certain cosmogonic influences but is not of probability
nature. We have demonstrated before and during the Meeting that human
judging of randomized histogram series gives quite objective and valid
results. However this work is labour-consuming. Therefore the
elaboration of first computer programs which can substitute human
judging are most promising results obtained in our laboratory by
M.Fedorov and A.Konradov recently. The main manifestations of our
phenomenon is replicated by new programs.
2. We had a fruitful discussion with Dr.J. Walker near computer with
demonstration of our expert program, Histogram Manager and handed this
to him. Unfortunately Prof. D.Bierman could not discuss our
disagreements because pressing organizing obligations.
3. I have presented (See Add.#1) new results of our
investigations carried out in our laboratory and simultaneously with :
1) prof. Axford and dr. Wilken in Max-Plank Institute fur Aeronomy in
Lindau; 2) prof. L.Belousov in International Institute of Biophysics
headed by prof. F. Popp in Neuss (Dusseldorf) and dr.V. Voeikov in
Moscow State University. In the last case the precision of time
resolution during histogram comparison was 1 min.
As previously similar histograms in different places were appeared at
the same local time.
This allows to conclude that during Earth rotation each geographic
point passes through heterogeneous space ( wjthin the range of middle
latitudes) with scale of heterogeneity no more than 20 km. It can be
also concluded that forces causing histogram patterns are outside solar
system because cycle of repeated appearance of similar histograms is 23
h 56 min, i.e. «star day».
4. It was important that dr. A.Kirillov presented his theory of
Space-Time which explains our phenomenon : Space-Time Fluctuations as a
possible explanation of the «Shnoll Effect» (See Add. #2).
5. We did not present our initial results of investigation of temporary
rows, obtained generators in GCP before discussion with main authors who
elaborated this system.
As before we are ready for collaboration,
Simon S. Shnoll
Add.#1
Macroscopic fluctuations in processes of different nature as a
result of cosmophysical (cosmogonic) causes. Possible heterogeneity
(discretness) of space-time.
S.E.Shnoll, T.A.Zenchenko, K.I.Zenchenko, M.V.Fedorov, E.V.Pozharskii,
A.A.Konradov,I.M.Zvereva, V.A.Kolombet
Moscow State University, Physics Department, Moscow; Institute of
Theoretical and Experimental Biophysics, Russian Academy of Sciences,
142290 Puschino, Russia, E-mail: Shnoll@pbc.iteb.serpukhov.su
50-year study of dispersion in measurements the rates of different
processes shows that this is not experimental error but manifestation
of fluctuations caused by cosmophysical factors. Our original tool for
investigation of dispersion in temporary rows is comparison the fine
structure of histograms obtained from experimental time series.
Histograms were obtained according to small non-overlapping successive
segments of time series. The fine structure of histograms distinctly
changes in time. The similar histograms are observed with high
probability simultaneously in different processes and even at a great
distances between points of measurements. This effect evidences
cosmogonic phenomenon determining fluctuations in any process
irrespective of its characteristic scale of energy.
The phenomenon can be the result of fluctuations of four-dimensional
space-time, related to non-uniformity (heterogeneity) of gravitational
structure of the World. During Earth rotation around its axis and along
near solar orbit particular parts of earth surface are regularly
exposed to different gravitational heterogeneity's and this is
manifested in respective forms of histograms. The histogram patterns are
like interferencional pictures and may be the result of interferention
of coherent cosmogonic waves.
The statements above are based on many year, long-term investigations
(the first publication was in 1958) of different processes with careful
discriminations of possible artifacts. Reviews of main results have been
regularly published in Russian and English (see references in
Physics-Uspekhi 41 (10) 1025-1035 (1998) ; 43 (2) 205-209 (2000)). The
investigation of the phenomenon was started from biochemical reaction
rates in the 50's, was continued in chemical reaction rates in the 70's
and during last 20 years are carried out preferably with radioactive
decay. The latter allows to exclude trivial "earth's" explanations of
the observed effects.
The general conclusions are based on the following experimental results.
1. High probability (p<10 -7 - 10 -8 ) of fine structure histogram
similarity in the nearest, neigbouring time intervals : "near zone
effect".
2. High probability of repeated appearance of similar histograms with
periods near 24 hours, 27 days and a year.
3. High probability of histogram similarity at any given time in
independent measurements of different processes in the same geographic
point.
4. High probability of histogram similarity at the same LOCAL time in
measurements of different processes in different geographic points.
5. Recent data showing that ascertained period of repeated appearance
of similar histograms is 23 h. 56 min, i.e. star but not solar days.
Most recent previous data will be also reported on our study of
histograms obtained in time series in "egg-generators" of GCP - net.
Add.#2
Space-Time Fluctuations as a Possible Explanation of the "Shnoll-Effect".
A.Kirillov
Inst. Of Applied Mathematics and Cybernetics Nighnii Novgorod, Russia
Kirillov@unn.ac.ru
In gravitation theory it is assumed that at Planck scales spacetime
acquires a foamlike structure as a result of quantum fluctuations. If we
believe in the fact that our Universe had a quantum period of evolution
in the past, then we should expect the existence of traces (relicts) of
such fluctuations at macroscopic or even cosmological scales. In this
report we show that a nontrivial quantum structure of our space at
macroscopic scales (wich may be the result of the fluctuations we just
pointed out) gives rise to a new fundamental phenomenon: spontaneous
origin of an interference picture in every physical processes. This
gives a possible explanation of the fine structure of histograms
observed in radioactivity measurements (Shnoll Effect) wich, therefore,
can possible serve as a test of the real structure of space.